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Comparing Parameter Estimation Techniques for an Electrical Power

Transformer Oil Temperature Prediction Model

A. Terry Morris

NASA Langley Research Center

Abstract - This paper examines various sources of error in MIT's improved top oil temperature rise over ambient

temperature model and estimation process. The sources of error are the current parameter estimation technique,

quantization noise, and post-processing of the transformer data. Results from this paper will show that an output error

parameter estimation technique should be selected to replace the current least squares estimation technique. The output

error technique obtained accurate predictions of transformer behavior, revealed the best error covariance, obtained

consistent parameter estimates, and provided for valid and sensible parameters. This paper will also show that the output

error technique should be used to minimize errors attributed to post-processing (decimation) of the transformer data.

Models used in this paper are validated using data from a large transformer in service.

1 Introduction

The failure of large power transformers is a considerable concern for electric utility companies. Encased in tanks of

flammable and environmentally hazardous finds, large power transformers that fail present considerable danger to people,

property and the local environment. Large power transformers are also costly devices. The capital costs alone associated

with repairing or replacing a large power transformer that has suffered catastrophic failure are as much as $1,000,000. For

these reasons, utility companies have clear incentives to identify and diagnose incipient failures in in-service transformers

before the failures become catastrophic.

The Massachusetts Institute of Technology (MIT) has developed an adaptive, intelligent system for on-line monitoring

and diagnosis of large power transformers. This system is currently implemented on a number of power transformers,

owned and operated by several utility companies in the United States. MIT's adaptive, on-line system uses a model-based

monitoring approach that gives immediate indication of incipient failures in order to prevent catastrophic failures.

Adaptive models, like those used in MIT's system, are advantageous in that they tune themselves to each transformer

using parameter estimation. The diagnostic part of the system is a hierarchical scheme which allows both near real-time

responses (to avoid catastrophic failure of the transformer), as well as long-term trends. In operation, a transformer

monitor in the system takes data every five minutes. Each module in the system then compares its data with a model

prediction and generates a residual error.

MIT's transformer monitoring group initially used the IEEE/ANSI top oil temperature rise over ambient temperature

(TOT) model as a reasonable starting point to model the transformer's thermal behavior. After analyzing data collected

from large transformers in service, the monitoring group successfully argued that the IEEE/ANSI standard TOT model

does not accurately account for variations in ambient temperature [1]. A slightly modified TOT model was found that

adequately incorporated ambient temperature variations. The modified model gave an improved performance over the

standard model. The mean and variance of the error in predicted oil temperature were significantly smaller, compared to
the standard model.

This paper provides a next step in the above process by examining various sources of errors in the improved model

and estimation process and by proposing modifications to the on-line system to effectively minimize errors introduced by

the estimation of parameters, the quantization noise found in the collected data, and the effects of post-processing (data

sampling and constant biases). The approach in this paper is to:



• choosethebestoverallparameterestimationtechniqueto calculateparametersin thetransformermodelwhile
analyzingwhetheror not the additionof a quantizationtermto the transformermodelimprovesthe model's
prediction;and

• examinetheeffectsof decimation(missingdata)andbiasontheparameterestimates.

Resultsin thispaperwill followa systematicprocessasdescribedin theapproach.The systematicprocessbeginsby
first determiningwhichparameterestimationtechniqueproducesbetterparametersfor the improvedmodelwith no
specificcompensationfor quantizationdisturbances,thatis,thenoiseisnot assumedto comefrom quantizationeffects.
Second,theprocesswill endeavorto findthebestparameterestimationtechniquethatsignificantlyreducestheeffectsof
quantizationnoise.Finally,theprocesswill concludebydeterminingtheeffectsof decimationandbiasof thetransformer
datainorderto reduceerrorsin theparameterestimatesattributedto postprocessing.

Numerousparameterestimationtechniquesareappliedto estimatetheparametersin thetransformermodelsomewith
andwithoutcorrectionsfor quantizationerror.Thetechniquesare:leas>squares(LS),predictionerror(PE),outputerror
(OE),optimalinstrumentalvariables(IV4),andmaximumlikelihood(ML)estimation.

Analysisandbackgroundof the on-linemonitoringsystem,the originalmodel,andthe improvedmodelwill be
describedin section3. Resultsof theprocesswill bedescribedin section4. Conclusionsandrecommendationswill
followin section5.
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top oil temperature

ambient temperature

top oil temperature rise over ambient temperature

full load top oil temperature rise over ambient temperature

initial top oil temperature rise over ambient temperature

thermal time constant of the transformer

sampling period
continuous time

discrete time

load current
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ratio of load loss at rated load to no-load loss

cooling state of the transformer

regressor matrix

expected value
error vector
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observation estimate

input
observation

regressor vector

additive errors

Acronyms

ANSI

IEEE

IV4

IV4 (qn)
LS

NIL

MIT

NASA

OE

OE (qn)
PE

QN
TOT

American National Standards Institute

Institute of Electrical and Electronics Engineers

Instrumental Variables technique applied to the improved TOT model

Insmamental Variables technique with compensation for quantization noise

Least Squares technique

Maximum Likelihood technique

Massachusetts Institute of Technology

National Aeronautics and Space Administration

Output Error technique applied to the improved TOT model

Output Error technique with compensation for quantization noise

Prediction Error technique

Quantization Noise

Top oil temperature rise over ambient temperature

3 Analysis and Background

3.1 Adaptive, On-Line Monitoring System

The on-line monitoring system compares each transformer's measurements (observations) with predictions obtained

from simulation models. A residual signal results by computing the difference between the output of the transformer and

the output of the simulation model (figure1 (a)). Transformer failures can be detected in two ways: first, by checldng for

large deviations in the residual signal and second, by tracldng parameter trends [2]. Rapidly developing parameter trends

m W indicate problems with the transformer. Long-term trends in the parameter estimates provide information on natural

aging. The adaptive model-based system was successfully implemented in the MIT pilot transformer facility [3,4]. The

adaptive models, whose parameters are obtained using parameter estimation, are advantageous in that they have the ability

to tune themselves to each transformer. The adaptation of parameters can occur in specified intervals (daily, weeldy, etc.).

The process generally involves the determination of parameters that best describe past data. These parameters, in ram,

are used to predict transformer behavior.

3.2 IEEE Model

The IEEE/ANSI C57.115 transformer top oil temperature rise over ambient temperature model [5] is based on the

theory that an increase in the current of a transformer results in losses which in effect increase the overall temperature of

the device. The IEEE model represents a first-order exponential response from an initial temperature state to a final

temperature state:

{ '0((/+J- in
0°= f;[ R+I

(1)



Equation(1)is thesolutionof theftrst-orderdifferentialequation
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as a forward Euler approximation for the time derivative, the IEEE transformer TOT model can be described by the

following difference equation:
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Approximations of the IEEE TOT model have been used in the MIT monitoring system with a high degree of

accuracy using the forced cooling state ( n = 1 ). However, when applied to several large power transformers in the field,

the model approximations produce results that are less than satisfactory, that is, the model predictions did not adequately

represent the top oil temperature.

3.3 MIT's Improved Model

The transformer monitoring group at MIT when faced with unsatisfactory results of the IEEE TOT model made a

slight modification to the original model. The improved TOT model adequately incorporates ambient temperature

variations for the forced cooling state ( n = 1 ) by using the ambient temperature variable as an input. The top oil

temperature error mean and variance for the improved model were found to be 0 and .4, respectively using one we& of

data collected from a large power transformer in service. These results were computed using the least squares technique

and are extremely good as compared to a mean error of -1.51 and an error variance of 15 obtained from the IEEE model

using the same data set. Results from the improved model (5) give improved performance over the IEEE model (4) and

satisfy the requirements for an on-line monitoring system [1]. The equation for the improved model is
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The physical model parameters (To, 0_, R ) are computed from the estimated parameters (K_, Ke, K_ ) as follows:

atKe K2 1to,el K21ro,ef
m

To - 1-Ke 0. 1-Ke R K_
(6)

A thorough detail of the results (including plots and tables) for the improved model are found in [1].

3.4 Sources of Error

There are possible sources of error in the transformer model, as described in [1]. Though the focus of [1] was on

modeling, the same sources of error exist in the improved model. The first source of error m W be the least-squares

parameter estimation technique. The second source of error m W be the quantization noise introduced by a 1°C

measurement resolution in the time-varying, temperature data. The third source m W be the five minute sampling period

originally selected to enable the consistent estimation of parameters. The described sources of error will be addressed in
the next section.

4 Results

This section will describe both the parameter estimation techniques used and the criteria used to select the best

estimation technique. As seen in figures 1(lo) and 1(c), the inputs of the on-line monitoring system are corrupted by

quantization noise due to a 1°C measurement resolution. The output (not shown) is also corrupted. This may or m W not

be a problem for the estimation of parameters. To determine if the 1°C measurement resolution introduces a deleterious

effect into the parameter estimates, two separate analyses will be conducted. In the first analysis, techniques will be

compared with no apparent attention to the quantization effects, that is, all disturbances are assumed to come from

Guassian white noise. In the second analysis, technique comparisons will explicitly address the effects of quantization
noise.

The investigation into various sources of error will be analyzed by first determining which parameter estimation

technique produces better parameters for the improved model with no compensation for quantization disturbances

(section 4.1). Next, the process will address the issue of finding the best parameter estimation technique that adequately

compensates for the effects of quantization noise (section 4.2). Finally, the process will examine the effects of decimation

and bias of the transformer data in order to reduce errors in the parameter estimates attributed to post processing (section

4.3).

Parameter estimaaon techniques

The various parameter estimation techniques used in this investigation were selected from a reasonably wide range of

available categories. The investigation is not exhaustive due to the fact that only five techniques were selected: least-

squares (LS) estimation, prediction error (PE) estimation, output error (OE) estimation, the optimal instrumental variables

(IV4) technique, and maximum likelihood (ML) estimation. These five techniques are representative, however, of the

fundamental breadth of estimation techniques, that is, at least four categories of parameter estimation techniques are

covered in this investigation. Least-squares (LS) and prediction error (PE) represent standard linear techniques while

output error (OE) estimation represents a standard nonlinear technique. The optimal instrumental variable (IV4)

technique can be either a linear or nonlinear approach depending on the choice of instruments. It was included because

of its flexibility in selecting appropriate instruments. Finally, the maximum likelihood (NIL) technique was selected

because of its purely stochastic approach.



Cnte, qa for selec_ng the best es_ma_on technique

Five criteria will be used to select the best parameter estimation technique. The estimation technique which best

satisfies the majority of criteria in its implementation will be designated the best overall technique among selected

techniques. Explanation of each criteria will follow.

1. Does the technique provide an adequate prediction?

In order for the on-line monitoring system to detect failures in the transformer, the model must accurately predict

transformer behavior. For obvious reasons, this criterion is the most important.

2. Is the technique suitable for the detection of failures in the on-line monitoring system?

A parameter estimation technique will be considered unsuitable if it renders residual errors from the on-line monitoring

system useless. Significant deviations provide information on possible transformer failures. If an estimation technique

renders this residual information useless, the monitoring system will not detect transformer failures.

3. Does the technique realize sensible physical parameters?

This criterion is extremely important in that it gives physical insight into the transformer's behavior. Physical parameters

that are out of range give a good indication of an unsuitable parameter estimation technique. Acceptable physical

parameters must fall in the following ranges:

To : 60-600 minutes

0_: 35- 65 °C

R : 2-10 dimensionless.

4. Does the technique provide for the consistent estimation of parameters?

Several sets of consecutive data will be used to evaluate the estimation techniques. For example, eight days of transformer

data will be divided to yield four sets of two-day length data. If the physical parameters from an estimation technique vary

widely from one data set to the next consecutive data set, the parameter estimation technique will be deemed inconsistent.

5. Does the technique produce a consistently minimal error covariance?

The error covariance used to validate estimated parameters in the pilot program [3] was also used in this investigation.
The valid measure

E = Y (8)

valid = trace (C) (10)

is concise in that it reflects the accuracy of all the parameters. In (8), • is the regressor matrLx with E and Y representing

the error and observation vectors, respectively. The term 'k + 1 - m' is simply the length of the error vector. For good

parameter estimates, the error covariance should be small.



4.1 Technique Comparisons with No Compensation for Quantization Effects

This section determines which parameter estimation technique produces better parameters for the improved model

with no compensation for quantization disturbances, that is, the noise is not assumed to come from quantization noise.

Several weeks of transformer data from a large transformer in service were utilized in this paper; however, only two-d W

length consecutive data sets were used in this first analysis. The selection of two-day length data sets was arbitrarily

established. All five parameter estimation techniques are compared in this analysis. The goal will be to determine the

technique that best meets the five selection criteria. Analysis of each technique follows.

Least-Squares ,_S) Estimated Model

Using the form of the linear regression model (11), a linear least-squares (LS) model was found to produce effectively

zero mean residuals with a .36 average residual variance using various sets of transformer data. Equation (11) corresponds

to equation (5) by allowingy to be 0 o and by allowing 0 to be the vector of unlmown parameters (K 1, K 2 , K s ). To

complete the remainder of the substitution, the regressor vector, q_, corresponds to a regressor matrLx having three

columns where the first column is assigned the values obtained from 0,oe [k -1] -Oa,,,b[k], the second column has the

values of 12 [k], and the third column is a vector of ones. Similar substitutions were performed for all the parameter

estimation techniques analyzed in this paper.

y(t) = q_T(t)0 +e(t) (11)

The LS loss function (12) is the standard L2-norm measure of error used to best fit the model outputs to the observed

outputs. An error covariance of 7.6 x 103 was obtained for the LS approximation and will serve as a baseline for

comparison since it was used in the previous study [1]. All LS parameters were estimated using the LS procedure in (13).

Figure 2(a) shows the calculated and measured top oil temperature outputs.

min _ Yi _q_T0 2 (12)

When used to predict the future behavior of the transformer, the LS estimates produced significant error in both the

mean and variance of the residuals (figure 20@. The LS technique also did not produce overall consistency of physical

parameters, especially with respect to 0j7 (see table 1).

Prediction Error ,(PE) Estimated Model

Since prediction error (PE) is a LS technique, most LS results described earlier apply. The difference between the two

rests in implementation. A PE model of the form

(14)

has the advantage of adjusting a model to obtain a better fit [6]. The adjustment is caused by the PE loss function

(15)



whichobtainsapredictionbasedonpresentdatain orderto minimizethevarianceof thepredictionv steps ahead of the

output. This, in essence, results in significantly minimized residuals. This advantage, however, is in effect a disadvantage

to the purpose of the on-line monitoring system. Since the on-line monitoring system detects possible transformer

failures by way of residual and parameter trends, the PE technique fails in implementation by drastically reducing residuals

to such a point as to render information from a residual sequence useless. Figures 3(a) and 3(b) show the calculated and

measured top oil temperature outputs using the PE technique. Numerical values from this estimation technique m W be
found in table 1.

Output Error (OE) Estimated Model

An output error (OE) estimated model of the form in (16) was found which produced consistent parameters among

many data sets. The OE estimated model produced zero mean residuals with a residual variance of .27 on average.

L = a L-, + b (16)

This represents approximately a 25% improvement over the LS residual variance. The OE loss function has the form

2

N-1 B(z-1)
min _ y_ u_

,v _=o F (Z-1)

(17)

which exerts its efforts on identifying the parameters of the polynomials F and B. This polynomial notation is adopted

from the standard Box-Jenldns transfer function model whereF and B are polynomials in z_I [7]. The error covariance of

the OE approximation was found to be 5.6 x 105 which is a two-order of magnitude improvement over the LS statistic.

With the advantage of filtering the input/output data with a whitening filter, the OE technique realized sensible physical

parameters over several data sets. Figure 4(a) displays the OE predicted versus the transformer's measured response.

Figure 4(b) shows an OE improvement over the LS estimates when predicting the transformer's measured response two

days ahead. Results from the OE technique may be viewed in table 1.

Optimal Instrumental Variables ,(IV4) Estimated Model

Since LS solutions often contain bias due to the corrdation between the regressors and the prediction error,

instrumental variable methods (IV4) are sometimes used. These methods generally replace the regressor _ used in the

linear regression equation (8) with some other variable Z called the instrumental variable. Three conditions placed on Z

are: 1) Z should be uncorrelated with the disturbances, 2) the matrix Zr_ should be invertible, and 3) Zr_ should be

large in order to provide for an efficient parameter estimate. With the conditions met, the estimate takes the following
form:

O=(Zr_)-lzrr (18)

The IV4 loss function is computed as the LS loss function (12) except for the use of Z in place of _. The instruments

selected in this analysis were developed using a four-step iterative scheme. The first step involved obtaining the LS

estimate (13). The second step involved the formation of the instruments starting with (5) and computing the parameter

estimates using (18). The third step involved obtaining the error between the model and the actual transformer data and

using the error to estimate a first-order noise model. Finally, the last step involved calculating new instruments using the

parameters obtained from step 2 and the noise filter obtained from step three. Using 1/C(z I) as a filter, the new

instruments in step 4 were calculated by filtering the instruments obtained in step 2 as follows:



1
ZV[k]- Z[k] (19)

C(z <)

Note that all the variables in (18) were filtered in like manner. The final IV4 parameter estimates were computed using

filtered variations of the variables used in (18) as follows:

Oz =(zFr oF } 1ZFrYF (20)

Using the four-step procedure, an IV4 estimated model was found which produced consistent parameters among

several data sets. The IV4 estimated model produced zero mean residuals with a residual variance of .30 on average. The

error covariance of the IV4 approximation was found to be 6.4 x 103 which is comparable to the LS baseline with

negligible improvement. The predicted and measured top oil temperature outputs using the IV4 technique (see figures 6(a)

and 600)) was very similar to the LS outputs. Results from the IV4 technique may be viewed in table 1.

Maximum Likelihood ,(ML) Estimated Model

Finally, maximum likelihood (ML) estimation was employed to estimate parameters for the transformer model. Using

the assumption that all disturbances were normally distributed zero-mean, o-2 variance residuals, the ML technique

obtained parameter estimates by starting with (8) to form the likelihood function, i.e.,

L(O;Y)= 1 exp 2--7 (Y -00Y(I1 -00 (21)

Next, the log likelihood was obtained by taldng the logarithm of (21) }_elding

-nln(2Jrcr 2)- 1 (yry-2yroo+ororo0)
1(0 ;Y ) = log L(O ;Y ) = 2 2or'T (22)

By taldng the derivative of the log likefihood equation (22) with respect to the parameter 0, we achieve the ML estimate

{_ = (CI)T(I))-* _ TY (23)

which is precisely the same as the LS estimate found in (13).

For this reason, the ML parameter estimates and results were veD _ close to those obtained using the LS technique.

Similarly, the predicted and measured top oil temperature outputs using the ML technique (see figures 8(lo) and 8(c)) were

veD _similar to the LS outputs displayed in Figure 2, that is, significant error may be seen in both the mean and variance of

the residuals. The ML technique also did not produce overall consistency of physical parameters, especially with respect

to Ofl. Results from the ML technique are displayed in table 1.

Results

Of the five parameter estimation techniques employed in this analysis (LS, PE, OE, IV4, and ML), the OE technique

exhibited better results when the noise is assumed to be normally distributed zero-mean, o- 2 variance residuals. The OE

technique achieved this by obtaining better predictions of transformer behavior, by revealing a much improved error

covariance, by achieving consistent parameter estimates, and by providing for valid and sensible physical parameters. The

second best estimate was obtained using the IV4 technique due to its slightly improved error covariance (as compared to



theLSbaseline)andits productionof consistentparameterestimates.TheLS andNIL techniques tied for third place

while the PE technique was considered last in this analysis due to its implementation.

4.2 Technique Comparisons with Compensation for Quantization Noise

As described earlier, the inputs and outputs of the on-line monitoring system are corrupted by quantization noise

(figure l(a)). This corruption corresponds to a 1°C measurement resolution which introduces 5 - 20 % error in the 5 -

20°C weeldy temperature variation. It has not been determined whether or not this quantization disturbance significantly

affects the estimation of parameters. To determine if the 1°C measurement resolution introduces a deleterious effect to

the estimation process, this section will compare various parameter estimation techniques while analyzing whether or not

the addition of a quantization term to the transformer model improves the model's prediction. It should be noted that an

exhaustive quantization error analysis will not be performed. This section will only focus on one approach to compensate

for the effects of the quantization disturbance. The use of other techniques to undo the effects of quantization remains a

subject of future research. As described earlier, several weeks of transformer data from a large transformer in service were

utilized in this paper. One-week length consecutive data sets were used in this analysis as opposed to the two-day length

data sets used in section 4.1. This larger one-week length data was utilized in order to invoke reasonable statistical

inferences about the quantization noise required by asymptotic theory.

Description and analysis of the additional quantization noise term, the parameter estimation techniques selected, and

the results from comparing the selected techniques follow. The goal of this section is identical to that of the previous

section, that is, which selected estimation technique best meets the five selection criteria described previously.

Quantization Noise (QN) Compensation Term

As discussed in [1], the data from each transformer was sampled at five minute intervals with a 1°C integer value

resolution. This measurement resolution introduces 5 - 20 % error in the 5 - 20'C weeldy temperature variation. This m W

introduce significant errors in the estimation of parameters. For this reason, a statistical approach will be used to quantify

the quantization effects due to the nonlinear nature of the quantizer on the input signals.

Quantization is a nonlinear and noninvertible process by which, in the case of the on-line monitoring system, the input

and output signals of the transformer have been discretized into a finite number of digits, thereby producing the sampled

data signals used in this paper. For rounding quantizers, each sample is rounded and assigned to the nearest level.

Quantization error is often defined to be the difference between the original sampled inputs and the rounded inputs. It is

reasonable to assume that the probability distribution of the error process is uniform over the range of the quantization

error [9], that is, the amplitude of the quantization noise is in the range from -.3'C to +5°C given a 1°C integer value

resolution (figure 8(a)). In this paper, we assume that the successive noise samples are uncorrdated with each other and

that the quantization noise is uncorrelated with the input signals, thus the quantization noise is assumed to be a uniformly

distributed white noise sequence with a mean value of 0 and a variance of 1/12.

For the development of the quantization term, we will commence from the actual transformer signals to the sampled

data and eventually to its additive effect in the improved model. Since the sampled data will be different than the original

transformer data, let us denote the quantization error to be the difference between the quantized sample data (denoted

Oa,,b, I, and Oto p ) and the true data (denoted va,,,bArRUu, I tRUe , and vtopC]TRUE), that iS,

or

or

TRUE
eqlkl=O_m b -O_mb (24)

eq[k]=IrRUE-I (25)

eq[k]=O,_oRfE-O, op (26)

10



Startingwith the improvedmodel(5),wewill tracethedevelopmentof a quantizationdisturbanceterm,qn [k], by

replacing the sampled data with the true data as follows:

O,oplkl= KlO,ojk- 11+(1-1(1 )Oo.,,jkl+K2Ilk[ + K3 (27)

Ofo UElkl-eqlkl=K,(O, o UElk-/l-eqlk-/l)+(/-K , )(O J'Slkl-ejkl)+KjFRU lkl-ejkll +K3 (28)

where

Ofo   lkl= K Ofo   lk- l l+(1- )O[J'] lkl+ KfR Elk f + +q.lkl

q.lk]= eqlk]-e qlk-1] ) -2KelrRUElk]eqlk]+K2eqlkf

(29)

(3o)

With the addition of quantization noise sequences to the collected data, namely 0arab, I, and O,op, the improved

model may now be written in a form that describes both the true data from the transformer and the additive effects of a

quantization disturbance term. This, in effect, is equivalent to modeling the transformer and the sensors used to acquire

the time-varying data. The term eq [k] in equations (28), (29) and (30) represents the quantization errors caused by the

rounding of the collected data. The disturbance term qn [k] is the incorporation of all quantization errors of the model.

As seen in (30), q_[k] is a nonlinear function of the quantization errors eq[k] and the true load current Ir_UUlk].

Since the true data, (Of2_[u I tRUe and 0 tRUE ), are irretrievable, an exact formulation of the transformer model is
_ _top

impossible. This also implies that some errors will exist when estimating parameters based on the improved model and

the given corrupted data. Given the nature of quantization noise, it is reasonable to obtain results using the stochastic

approach of assuming a random noise sequence for the quantization disturbance term.

Parameter Estimation Techniques Selected

The parameter estimation techniques selected for this analysis differs slightly from the ones selected in section 4.1. The

LS technique was not included explicitly due to the fact that the results were very close to those using the ML technique

(as discussed in section 4.1). The PE technique was not utilized because it failed in its implementation, that is, it drastically

reduced residuals to such a point as to render information from the residual sequence useless. This point was explained in

section 4.1. Two OE techniques were employed. The first OE technique uses the improved model with no additional

quantization disturbance term. The second OE technique, OE (qn), technique uses the improved model with the

additional quantization disturbance sequence. And in like manner, two W4 techniques were employed. The first IV4

technique uses the improved model with no additional quantization term while the second technique, IV4 (qn), uses the

improved model with the additional quantization disturbance sequence. Finally, the ML technique will be utilized in the

same manner as before. The list of selected parameter estimation techniques analyzed in this section follows:

• OE

• OE (qn)

• IV4

• IV4 (qn)

• ML

For notational purposes, the two parameter estimation techniques with the notation (qn) represent techniques applied

with the quantization disturbance term added to the improved model.
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Output Error (OE) Estimated Model

An output error (OE) technique was applied to MIT's improved model to estimate the various parameters in (5). The

OE estimated model produced zero mean residuals with a .35 residual variance on average. The error covariance of the

OE approximation was 2.4 x 105 for one week of data with similar results for remaining weeks. Consistent and sensible

physical parameters were realized with this technique. Figure 4(c) displays the OE predicted versus measured response

for we& 2 in the transformer data set. This technique also provided good one- and two-week predictions of transformer

behavior, as seen in figures 4(d) and 4(e), respectively. Results from the OE technique including prediction statistics are

displayed in table 2.

Output Error (OE) Estimated Model with additional (qn) term

The OE (qn) technique produced results that were virtually identical to those using the OE technique. The error

covariance was identical and the physical parameters (To, 0_ ,R) were comparable and sensible. The fit and weeldy

predictions of the OE (qn) estimated model (figures 5(a)-5(c)) were practically identical to the OE responses. Results are
shown in table 2.

Optimal Instrumental Variables (IV4) Estimated Model

An optimal instrumental variables (IV4) technique was applied to the improved model. Results from this technique

revealed zero mean residuals with a residual variance of .36 on average. All estimated physical parameters were found to

be consistent and sensible among several weeks of transformer data. The IV4 estimated model differs from the OE

estimated model with respect to its error covariance. The IV4 error covariance was not very good at 3.9 x 103 which is a

two-order of magnitude decrease in parameter reliability. The IV4 fit is shown in figure 6(c). The one- and two-week

predictions (figures 6(d) and 6(e)) were comparable to those obtained using the OE technique.

Optimal Instrumental Variables (IV4) Estimated Model with additional (,qn) term

The IV4 (qn) technique nearly produced zero mean residuals with a .34 residual variance on average. The W4 (qn)

method produced the worst results of all compared techniques in this section. First, the estimated physical parameters

were not sensible particularly with respect to 0fl and R. Second, the estimated parameters were not found to be

consistent. There were large fluctuations in the values for 0_ (see table 2). Third, the estimated parameters were not found

to be as valid as those of the OE technique. The 3.2 x 102 error covariance was at least three orders of magnitude below

that of the OE technique. The IV4 (qn) fit differed slightly from the IV4 estimated model (figure 7(a)). Unacceptable

one- and two-week predictions for the IV4 (qn) technique are shown in figures 7(Io) and 7(c), respectively.

Maximum Likelihood ,(ML) Estimated Model

Maximum likelihood (ML) estimation was applied to the improved model. In the quantization noise discussion, it was

generally believed that the probability distribution of the error process was uniform over the range of the quantization

error. It is assumed that the successive noise samples are uncorrelated with each other and that the quantization noise is

uncorrelated with the input signals. Given the use of large sample sizes (one-week length data sets), the ML technique

employed the use of an approximating (guassian) distribution to characterize the stochastic behavior of the quantization

noise sequences. This implication is based on the central limit theorem due to the fact that the sample size is large and

each quantization sequence in (30) has the same uniform distribution.

The ML estimated model nearly produced zero mean residuals with a .49 residual variance on average. The estimated

physical parameters were not sensible particularly with respect to 0_ and R. With an error covariance of 2.8 x 103, the

estimated parameters were not as reliable as the OE estimates. The most positive aspect of the ML estimated model was

the fairly consistent estimation of physical parameters. The ML fit is shown in figure 8(d). The one- and two-week
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predictions(figures8(e)and8(0) werenot asreliableastheOE predictionsbut weremuchbetterthan theIV4 (qn)
predictions.

Other Models

Several other parameter estimation techniques (and modified versions of the techniques listed above) were analyzed in

this section other than the ones described. An independent OE technique (i.e., the terms K; and (l-K;) in (5) were

estimated independently) was estimated, but the results (not shown) were not consistent. Another optimal instrument

variables (IV4) technique was employed using a 2na order noise model. Results obtained were identical to the IV4 method

described earlier in this section. A state-space model [8] was identified but was found to be unsuitable for the on-line

monitoring system for the same reasoning as for the prediction error (PE) technique discussed in section 4.1. Finally, a

Lesieutre algorithm (LA) was used to estimate parameters but did not obtain good estimates. This was due in part to the

rank deficiency found in the very large (sometimes 500 x 500 dimension) regression matrLx.

Results

The additional quantization noise term did not improve the estimation of parameters for the improved model

regardless of the parameter estimation technique selected. In the case of the IV4 estimated model, the additional term in

IV4 (qn), decreased the reliability of the parameter estimates. This same statement cannot be said with regard to the OE

(qn) model. The additional quantization term, though not decreasing the validiey of the parameter estimates, did not

increase it either since the results from both OE and OE (qn) techniques were practically identical. Given the similar

results, it is advisable to utilize the simplest model, that is, the OE estimated model.

Of the five parameter estimation techniques employed in this analysis, the OE technique should be used primarily on

MIT's improved transformer top oil temperature rise over ambient temperature model when using long data sets (a week

or greater). Implementation of the OE technique exhibited better results than all of the described estimation techniques in

the presence of quantization noise. The OE technique obtained accurate one- and two-week predictions of transformer

behavior, revealed the best error covariance found among the estimation techniques, obtained consistent parameter

estimates, and provided for valid and sensible physical parameters. The second best estimate was obtained using the OE

(qn) technique due to its similar OE results. The IV4 technique was the third best while the ML technique came in fourth

place. The IV4 (qn) technique was considered last in this analysis due to its inadequate prediction and its unacceptable
error covariance.

4.3 Decimation and Bias

This section will examine the effects of decimation (missing data) and bias of the transformer data in order to reduce

errors in the parameter estimates attributed to post processing. As described in [1], a third possible source of error in the

transformer model may be the five minute sampling period originally selected to enable the consistent estimation of

parameters in MIT's pilot transformer facility. In order to reduce errors in the parameter estimates attributed to post

processing, two approaches will be analyzed. The first will examine the effects of down sampling (decimation) for the

improved model. The second approach will address an unanswered question which surfaced when dealing with the

effects of quantization noise, that is, will biasing the data adequately compensate for the quantization noise.

Decimation

The implementation of two estimation techniques (the best technique, OE, and the worst technique, PE, from section

4.1) were compared using the same transformer data (see table 3). At least four observations will be discussed with

respect to down sampling of the data. First, the thermal time constant, To, was observed to be the most sensitive physical

parameter to down sampling among ma W data sets and estimation techniques. Second, the degree of error introduced

into the parameter estimates by decimation is directly proportional, in a general sense, to the estimation technique

employed. The OE technique showed less than 1% error in the thermal time constant at a decimation factor of 10. The
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PEtechnique,ontheotherhand,introduced67% errorinto Toat the same decimation factor. The data suggests that an

OE technique should be used in order to minimize the errors in the estimated parameters attributed to decimation.

The third observation in this analysis revealed that the decimation factor had negligible effect on residual variances,

o-+2 . This is a positive result for the on-line monitoring system since transformer failures are detected by checldng for

deviations in the residual sequence. Constant residual variances (unaltered by the decimation factor) can be used as

statistical bounds on the residual error. This allows the on-line monitoring system to have greater confidence in detecting

transformer failures independent of the decimation factor used during post processing.

The last observation concerns the error covariance, valid, described in (10). Parameter reliability is maximized when

decimation is not implemented (see table 3). This is an obvious conclusion due to the fact that all of the information

contained in the data is utilized in the estimation process. What is commonly not lmown is the extent to which

decimation introduces errors in the parameter estimates. Regardless of the parameter estimation technique used, the error

covariance increased at most by two orders of magnitude using any decimation factor greater or equal to five. This

signifies the extent to which decimation lessens parameter reliability.

Bias

Biasing the data by discrete and floating-point values was thought to be an adequate compensation to cancel the effects

of quantization noise. This, however, did not turn out to be the case. Biasing the data before applying a parameter

estimation technique was found to have no effect on the physical parameters or the residual statistics.

5 Condusions and Recommendations

Various sources of errors in MIT's improved model and estimation process have been examined in this paper. Possible

sources of errors were the estimation of parameters, the quantization noise found in the collected data, and the effects of

post-processing (data sampling and constant biases). Results from this paper show that errors were indeed produced by all

three sources. An investigation into the extent and possible remedy of the error sources was conducted. Results from this

paper show that an output error (OE) parameter estimation technique should be selected to replace the current least

squares estimation technique. When compared to results from several other parameter estimation techniques, the output

error technique obtained accurate predictions of transformer behavior, revealed the best error covariance, obtained

consistent parameter estimates, and provided for valid and sensible using two-day length data sets. The OE technique also

proved best (among selected techniques) in the presence of quantization noise using one-week length data sets by

satisfying the selection criteria. For these reasons, the OE technique is designated the best overall technique among

selected techniques by best satisfying all of the selection criteria in its implementation. The primary recommendation in

this paper is the selection of an OE technique to replace the current least squares (LS) estimation technique.

Decimation of the transformer data also introduced significant error into the parameter estimates, thereby affecting

parameter reliability. With regard to decreased validity of parameters, the error covariance increased at most by two orders

of magnitude using any decimation factor greater or equal to five. This confirms the notion that the greater the

decimation, the less the parameter reliability. To minimize the introduction of errors into the parameter estimates, an

appropriate parameter estimation technique should be selected. This paper recommends the use of the OE technique to

minimize errors attributed to decimation of the transformer data. To obtain greater validity of the parameter estimates,

the decimation factor should be lowered. As a positive note, decimation had negligible effect on residual variances.

Further research is required to address the use of other techniques to undo the effects of quantization noise as well as

the nonlinear estimation of the parameters associated with MIT's improved model.
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Figure 5. Output error (qn) prediction of top oil temperature in transformer.

21



Top oil
temp
(deg C)

45

4O

35

30

25

20

i i _ i i i i15' .25 .5 .7 1 1.25 1.5 1.75

Time (days)

(a) Fitting model to discrete data over two days.

45

4o

35

Top oil
temp 30
(deg C)

._-L",,, 1.%,

2O

15
2.25 2.5 2.75 3 3.25 3.5 3.75

Time (days)

Oa) Predicting ahead two days.
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Table 1. Two-day Length Parameter Estimates and Prediction Statistics

Parameter
Estimation

Technique

LS

PE

OE

IV4

ML

days 1-2

days 3-4

days 5-6

days 7-8

days 1-2

days 3-4

days 5-6

days 7-8

days 1-2

days 3-4

days 5-6

days 7-8

days 1-2

days 3-4

days 5-6

days 7-8

days 1-2

days 3-4

days 5-6

days 7-8

Model Fit over Two-Day Leng*thData Prediction Error
Statistics

Data Estimated Parameters Errors in Fit Next Two Days
R valid I.le 2 ].l 2

175 102 8.6 7.6xlo 3 -.03 .44 -1.44 .94

206 72 5.8 1.8xlO 2 .05 .32 -.19 .26

190 42 2.5 1.6xlo 2 .04 .34 .05 .24

132 34 1.6 4.0xlo 2 .02 .34 ......

176 102 8.6 7.6xlo 3 0 .07 .04 .08

206 72 5.8 1.8xlo 2 0 .08 0 .08

190 42 2.5 1.6xlo 2 0 .08 0 .06

132 34 1.6 4.0xlo 2 0 .06 ......

220 57 3.8 5.6xlo 5 -.01 .46 -.34 .28

242 13 .04 7.6xlo 5 .01 .20 .17 .42

230 60 4.5 8.9xlo 5 0 .23 .21 .29

274 42 2.5 5.5xlo 4 -.05 .21 ......

211 74.8 5.5 6.4xlo 3 -.02 .45 -.76 .40

230 71.9 5.8 1.5xlo 2 .08 .28 -.28 .24

225 48.6 3.1 1.5xlo 2 0 .24 .07 .23

267 50.8 3.4 6.2xlo 2 -.02 .22 ......

175 102 8.7 7.6xlo 3 -.03 .44 -1.44 .94

206 72.3 5.8 1.8xlo 2 .05 .32 -.19 .26

190 42 2.5 1.7xlo 2 .04 .34 .05 .24

132 34.2 1.6 4.0xlo 2 .02 .34 ......
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TaNe2.

Parameter
Estimation Data
Technique Week

week1
OE week2

week3

week4

week1

OE (qn) week2
week3

week4

week1
IV4 week2

week3

week4

week1

IV4 (qn) week2
week3

week4

week1
ML week2

week3

week4

Weekly ParameterEstimates and Prediction Statistics

ModalFitoverWeek
Estimated Parameters

ro R
235 43.3 2.7

227 55.9 4.0

236 39.2 2.2

215 49.2 3.2

237 43.3 2.7

227 55.7 4.0

237 39.0 2.1

214 49.2 3.2

218 41.2 2.5

219 55.2 3.9

228 46.7 2.9

213 50.9 3.3

217 85.8 9.6

220 62.8 8.3

235 137.3 14.1

220 108.4 12.0

153 31.0 1.5

174 47.0 3.0

195 47.9 3.0

168 45.0 2.8

Errors in Fit

valid I"l e C_e2

4.8x10 5 0 .35

2.4x10 5 0 .39

1.2x10 5 0 .30

2.6x10 5 0 .37

4.8x10 5 0 .36

2.4x10 5 0 .39

1.2x10 5 0 .31

2.6x10 5 0 .37

7.6x10 3 -.02 .34

4.2x10 3 -.02 .39

2.5x10 3 0 .31

3.9x10 3 0 .37

3.2x10 2 -.01 .34

4.8x10 3 -.03 .40

1.9x10 2 0 .30

1.1x10 2 0 .33

7.0x10 3 0 .56

4.6x10 3 -.01 .55

2.8x10 3 0 .40

4.3x10 3 0 .45

Prediction Error Statistics

Next 8-14 Days Next 15-21Days

2 y G2

.30 .57 .50 .31

.41 .36 .32 .41

-.05 .48 ......

.30 .58 .50 .31

.43 .36 .32 .42

-.05 .47 ......

.30 .54 .46 .32

.39 .36 .29 .39

-.07 .40 ......

.90 1.26 1.89 .82

4.21 .63 4.07 .63

-1.58 3.24 ......

0 .56 .39 .94

.27 .57 .19 .43

-.07 .37 ......
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Table3.DecimationEffects

Estimation

Technic_ue

OE

PE

Parameters

& Residuals

To
0_
R

valid

2
Ge

To
o_
R

valid

2
Ge

Decimation Factor

236

41.0

2.3

7.2x10 7

.32

121

54.7

3.7

1.6x10 3

.07

236

39.2

2.2

1.2x10 5

.30

195

47.9

3.0

2.8x10 3

.07

10

234

39.2

2.2

4.4x10 5

.29

201

50.0

3.2

4.3x10 3

.11
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